Своими руками        04.02.2024   

Графические задачки. Советские загадки на логику в картинках. Решение графических задач по физике

Семёнов Влад, Ивасиро Александр, ученики 9кл

Работа и презентация к решению графических задач. Были сделаны электронная игра и брошюра с задачами графического содержания

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

тезис Решение задач - это один из методов познания взаимосвязи законов природы. Решение задач - одно из важных средств повторения, закрепления и самопроверки знаний. Большинство физических задач мы решаем аналитическим способом, но в физике существуют задачи, которые требуют графического решения или в которых представлен график. В этих задачах необходимо использовать умение читать и анализировать график.

Актуальность темы. 1) Решение и анализ графических задач позволяют понять и запомнить основные законы и формулы по физике. 2) В КИМах для проведения ЕГЭ по физике и математике включены задания с графическим содержанием

Цель проекта: 1. Издать пособие для самостоятельного обучения решению графических задач. 2. Создать электронную игру. Задачи: 1. Отобрать графические задачи по различным темам. 2. Выяснить общую закономерность в решении графических задач.

Чтение графика Определение тепловых процессов Определение периода, амплитуды,… Определение Ек, Ер

В курсе физики 7-9 можно выделить законы, которые выражаются прямой зависимостью: Х(t), m (ρ) , I (q) , F упр(Δ x), F тр(N) , F (m), P (v) , p (F) p (h) , F а(V т) … , квадратичной зависимостью: E к =mv 2 /2 E р =CU 2 /2 E р =kx 2 /2

1 . С равнить ёмкость конденсаторов 2 .Какой из ниже указанных точек на диаграмме зависимости импульса тела от его массы соответствует минимальная скорость? Рассмотрим задачи 3 1 2

1 .В каком соотношении находятся между собой коэффициенты жесткости? 2. Покоящиеся в начальный момент тело, под действием постоянной силы перемещается так, как показано на рисунке. Определить величину проекции этой силы, если масса тела 3кг.

Обратите внимание, дана Р(V), а вопрос о Ек 1 .В каком из нижеприведенных соотношений находятся кинетические энергии трех тел различных масс в момент времени, когда их скорости одинаковы? 2 .По проекции перемещения от времени для тела массой 2кг, определить импульс тела в момент времени 2с. (Начальная скорость равна нулю.)

1 . Какой из нижеприведенных графиков наиболее точно соответствует зависимости проекции скорости от времени? (Начальная скорость равна нулю.) Е От одной зависимости к другой От графика к графику

2 . Тело массой 1кг изменяет свою проекцию скорости так, как показано на рисунке. Какой из нижеприведенных графиков зависимости проекции силы от времени, соответствует данному движению?

В курсе физики встречаются задачи с несколькими способами решения 1. Вычислить среднюю скорость 2. Определить, в каком соотношении между собой находятся проекции перемещения тел в момент времени, когда скорости тел одинаковы. 10 5 0 V,x ; м/с t,c I II III

Способ №1 10 5 0 V,x ; м/с t,c I II III a x= V 2x – V 1x t 2 – t 1 2 S=v 0 t+at 2 /2

Способ № 2 10 5 0 Vx ; м/с t,c I II III Sx= (V 0 x + Vx) t/ 2

Способ № 3 10 5 0 V,x ; м/с t,c I II III S 3 x= 1 *S S 2 x= 2 *S S 1 x: S 2 x: S 3 x= 3: 2: 1 S 1 x= 3 *S

Лишний слайд Очевидно, третий способ решения не требует промежуточных вычислений, поэтому более быстрый, а значит, более удобный. Выясним, в каких задачах возможно такое использование площади.

Анализ решённых задач показывает, что если произведение X и Y физическая величина, то она равна площади фигуры, ограниченной графиком. P=IU , A=Fs S=vt , V=at, v 0 =0 Δp/t=F , q=It Fa=V ρ g ,…. Х Y

1 .На рисунке приведен график зависимости проекции скорости некоторого тела от времени. Определить проекцию перемещения и путь этого тела за 5 с после начала движения. Vx ; м/с 3 0 -2 3 t ; с 5 А) 5 м, 13м В)13 м, 5м С)-1 м, 0м Д)9 м, -4м Е)15 м, 5м

0 4 6 8 1 2 3 4 5 6 t, c V, м/с 2 .Определите среднюю скорость велосипедиста за время t=6с. Весь путь на всё время S х =S трапеции 4,7м / с

Изменение импульса тела определяется площадью фигуры – прямоугольника, если сила постоянна, и прямоугольного треугольника, – если сила зависит от времени линейно. F t F t t F

3 .Наибольшее изменения импульса тела за 2с F t 1 .А 2 .Б 3 .С 1 С Б А Подсказка: Ft=S ф =  p

4 .Используя зависимость импульса тела от времени, определить равнодействующую силу действующую на это тело. А) 3Н B) 8Н C) 12Н D) 2Н E) 16 ловушка Р; кг* м/с 6 2 0 2 t ; c F= Δ p/t=(6-2)/2=2

Механическая работа Механическая работа постоянной по модулю и направлению силы численно равна площади прямоугольника. Механическая работа силы, величина которой зависит от модуля перемещения по линейному закону, численно равна площади прямоугольного треугольника. S 0 F F * s = A = S прямоуг S 0 F A = S пр.треуг

5 .На рисунке приведена зависимость силы действующей на тело от перемещения. Определить работу этой силы при перемещении тела на 20см. А) 20Дж. B) 8Дж. C) 0,8Дж. D) 40Дж. E) 0,4Дж. ловушка См в метры

Вычислить заряд 4 I,A 6 2 U,B 4 8 12 16 20 24 Вычислить сопротивление Вычислить А, Δ Ек за 4с Вычислить Ер пружины

6 .Под действием переменной силы, тело массой 1кг изменяет свою проекцию скорости с течением времени, так, как показано на рисунке. Определить работу равнодействующей этой силы за 8 секунд после начала движения А) 512Дж B) 128Дж C) 112Дж D) 64Дж E) 132Дж сложно A=FS , S= S (t=4c) =32м, F =ma, a =(v-v0)t=2 м / с 2

заключение В результате своей работы мы выпустили брошюру с задачами графического содержания для самостоятельного решения и создали электронную игру. Работа оказалась полезной для подготовки к ЕГЭ, а также для учащихся, интересующихся физикой. В перспективе рассмотрение других видов задач и их решение.

Функциональные зависимости физических величин. Общие способы, приёмы и правила подхода к решению графических задач проект « ГОВОРЯЩАЯ ЛИНИЯ » МБОУ СОШ №8 Южно-Сахалинск Выполнили: Семёнов Владислав, Ивасиро Александр ученики 9класса «А»

Источники информации. 1. Лукашик В.И, Иванова Е.В Сборник задач по физике. Москва «Просвещение» 2000 2. Степанова Г.И Сборник задач по физике М. Просвещение 1995 3. Рымкевич А.П Сборник задач по физике Москва. Просвещение 1988. 4. www.afportal.ru 5. А.В. Перышкин, Е.М Гутник Учебник по физике 7, 8, 9 класс. 6. материалы ГИА 7. С.Е. Каменецкий, В.П.Орехов Методика решения задач по физике в средней школе. М: Просвещение, 1987. 8. В.А. Балаш Задачи по физике и методы их решения. Москва «просвещение» 1983

Эксперты доказывают преимущество технического образования перед гуманитарным, доказывают, что Россия остро нуждается в высококвалифицированных инженерах и технических специалистах, и эта тенденция сохранится не только в 2014 году, но и на протяжении последующих лет. По мнению специалистов по подбору персонала, если страну будет ждать экономический рост в ближайшие годы (а предпосылки к этому есть), то весьма вероятно, что российская образовательная база "не потянет" многие отрасли (высокие технологии, промышленность). "На данный момент на рынке труда ощущается острый дефицит специалистов в области инженерно-технических специальностей, в области IT: программистов, разработчиков ПО. Востребованными остаются инженеры практически всех специализаций. В то же время рынок перенасыщен юристами, экономистами, журналистами, психологами", - говорит генеральный директор Кадрового агентства уникальных специалистов Екатерина Крупина. Аналитики, делая долгосрочные прогнозы до 2020 года, уверены: спрос на технические специальности будет с каждым годом стремительно расти. Актуальность проблемы. Следовательно, актуально качество подготовки к ЕГЭ по физике. Решающим является овладение методами решения физических задач. Разновидностью физических задач являются графические задачи. 1) Решение и анализ графических задач позволяют понять и запомнить основные законы и формулы по физике. 2) В КИМах для проведения ЕГЭ по физике включены задания с графическим содержанием.

Скачать работу с презентацией.

ЦЕЛЬ ПРОЕКТНОЙ РАБОТЫ:

Изучение типов графических задач, разновидностей, особенностей и методов решения.

ЗАДАЧИ РАБОТЫ:

1. Изучение литературы о графических заданиях; 2. Изучение материалов ЕГЭ (распространенность и уровень сложности графических заданий); 3. Исследование общего и особенного графических задач из разных разделов физики, степени сложности. 4. Изучение методов решения; 5. Проведение социологического опроса среди учащихся и учителей школы.

Физическая задача

В методической и учебной литературе под учебными физическими задачами понимают целесообразно подобранные упражнения, главное назначение которых заключается в изучении физических явлений, формировании понятий, развитии физического мышления учащихся и привитии им умений применять свои знания на практике.

Научить учащихся решать физические задачи - одна из сложнейших педагогических проблем. Я считаю данную проблему очень актуальной. Мой проект имеет своей целью решить две задачи:

1. Помочь в обучении школьников умению решать графические задачи;

2. Привлечь учащихся к данному виду работы.

Решение и анализ задачи позволяют понять и запомнить основные законы и формулы физики, создают представление об их характерных особенностях и границах применение. Задачи развивают навык в использовании общих законов материального мира для решения конкретных вопросов, имеющих практическое и познавательное значение. Умение решать задачи является лучшим критерием оценки глубины изучения программного материала и его усвоения.

В исследованиях по выявлению степени усвоения учащимися отдельных операций, входящих в умение решать задачи, установлено, что 30-50% учащихся различных классов указывают на отсутствие у них такого умения.

Неумение решать задачи является одной из основных причин снижения успеха в изучении физики. Проведенные исследования показали, что неумение самостоятельно решать задачи является основной причиной нерегулярного выполнения домашних заданий. Только небольшая часть учащихся овладевает умением решать задачи, рассматривает как одно из важнейших условий повышения качества знаний по физике.

Такое состояние в практике обучения можно объяснить отсутствием четких требований к формированию данного умения, отсутствие внутренних побудительных мотивов и познавательного интереса у учащихся.

Решение задач в процессе обучения физики имеет многогранные функции:

  • Овладение теоретическими знаниями.
  • Овладение понятиями о физических явлениях и величинах.
  • Умственного развития, творческого мышления и специальных способностей учащихся.
  • Знакомит учащихся с достижениями науки и техники.
  • Воспитывает трудолюбие, настойчивость, волю, характер, целеустремленность.
  • Является средством контроля за знаниями, умениями и навыками учащихся.

Графическая задача.

Графические задачи - это такие задачи, в процессе решения которых используют графики, диаграммы, таблицы, чертежи и схемы.

Например:

1. Построить график пути равномерного движения, если v = 2 м/с или равноускоренного при v 0 =5 м/с и а = 3 м/с 2 .

2. Какие явления характеризует каждая часть графика…

3. Какое тело движется быстрее

4. На каком участке тело двигалось быстрее

5. Определить по графику скорости величину, пройденного пути.

6. На каком участке движения тело покоилось. Скорость увеличивалась, уменьшалась.

Решение графических задач способствует уяснению функциональной зависимостью между физическими величинами, привитию навыков работы с графиками, развитию умения работать с масштабами.

По роли графиков в решении задач их можно подразделить на два вида: - задачи, ответ на вопрос которых может быть найден в результате построения графика; - задачи, ответ на вопрос которых может быть найден с помощью анализа графика.

Графические задачи могут быть комбинированными с экспериментальными.

Например:

С помощью мензурки с водой определить вес деревянного бруска…

Подготовка к решению графических задач.

Для решения графических задач ученик должен знать различные виды функциональных зависимостей, что означает пересечение графиков с осями, графиков между собой. Нужно понимать чем отличаются зависимости, например, x = x 0 + vt и x = v 0 t + at 2 /2 или x =x m sinω 0 t и x = - x m sinω 0 t; x =x m sin(ω 0 t+ α) и x =x m cos (ω 0 t+ α) и т.д.

План подготовки должен содержать следующие разделы:

· а) Повторить графики функций (линейной, квадратичной, степенной) · б) Выяснить - какую роль играют графики в физике, какую информацию несут. · в) Систематизировать физические задачи по значимости графиков в них. · г) Изучить методы и приемы анализа физических графиков · д) Выработать алгоритм решения графических задач по различным разделам физики · е) Выяснить общую закономерность в решении графических задач. Для овладения методами решения задач необходимо решать большое количество разнотипных задач, соблюдая принцип - «От простого к сложному». Начиная с простых, осваивать методы решения, сравнивать, обобщать разные задачи как на основе графиков, так и на основе таблиц, диаграмм, схем. Следует обращать внимание на обозначение величин по координатным осям (единицы физических величин, наличие дольных или кратных приставок), масштаб, вид фукциональной зависимости (линейная, квадратичная, логарифмическая, тригонометрическая и т.п.), на углы наклона графиков, точки пересечения графиков с координатными осями или графиков между собой. Особенно внимательно необходимо подходить к задачам с заложенными «ощибками», так же к задачам с фотографиями шкал измерительных приборов. В этом случае нужно правильно определить цену деления измерительных приборов и безошибочно считать значения измеряемых величин. В задачах на геометрическую оптику особенно важно аккуратно и точно делать построение лучей и определить пересечения их с осями и между собой.

Как решать графические задачи

Овладение общим алгоритмом решения физических задач

1. Осуществление анализа условия задачи с выделением задач системы, явлений и процессов, описанных в задаче, с определением условий их протекания

2. Осуществление кодирования условия задачи и процесса решения на различных уровнях:

а) краткая запись условия задачи;

б) выполнение рисунков, электрических схем;

в) выполнение чертежей, графиков, векторных диаграмм;

г) запись уравнения (системы уравнений) или построение логического умозаключения

3. Выделение соответствующего метода и способов решения конкретной задачи

4. Применение общего алгоритма для решения задач различных видов

Решение задачи начинается с чтения условия. Нужно убедиться в том, что все термины и понятия в условии ясны для учащихся. Непонятные термины выясняются после первичного чтения. Одновременно необходимо выделить, какое явление, процесс или свойство тел описывается в задаче. Затем задача читается повторно, но уже с выделением данных и искомых величин. И только после этого осуществляют краткую запись условия задачи.

Составление плана

Действие ориентировки позволяет осуществить вторичный анализ воспринятого условия задачи, в результате выполнения которого выделяются физические теории, законы, уравнений, объясняющие конкретную задачу. Затем выделяются методы решения задач одного класса и находится оптимальный метод решения данной задачи. Результатом деятельности учащихся является план решения, который включает цепочку логических действий. Правильность выполнения действий по составлению плана решения задачи контролируется.

Процесс решения

Во-первых, необходимо уточнить содержание известных уже действий. Действие ориентации на данном этапе предполагает еще раз выделение метода решения задачи и уточнение вида решаемой задачи по способу задания условия. Последующим действием является планирование. Планируется способ решения задачи, тот аппарат (логический, математический, экспериментальный) с помощью которого возможно осуществить дальнейшее ее решение.

Анализ решения

Последний этап процесса решения задачи заключается в проверке полученного результата. Осуществляется он снова теми же действиями, но содержание действий изменяется. Действие ориентации - это выяснение сущности того, что необходимо проверить. Например, результатами решения могут быть значения величин коэффициентов, физических постоянных характеристик механизмов и машин, явлений и процессов.

Результат, полученный в ходе решения задачи, должен быть правдоподобным и соответствовать здравому смыслу.

Распространенность графических задач в КИМах в заданиях ЕГЭ

Изучение материалов ЕГЭ ряда лет (2004 - 2013г.г.) показало, в заданиях ЕГЭ по различным разделам физики распространены графические задачи по различным разделам физики. В заданиях А: по механике - 2-3 по молекулярной физике - 1 по термодинамике - 3 по электродинамике - 3-4 по оптике - 1-2 по квантовой физике - 1 по атомной и ядерной физике - 1 В заданиях В: по механике -1 по молекулярной физике - 1 по термодинамике - 1 по электродинамике - 1 по оптике - 1 по квантовой физике - 1 по атомной и ядерной физике - 1 В заданиях С: по механике - по молекулярной физике - по термодинамике - 1 по электродинамике - 1 по оптике - 1 по квантовой физике - по атомной и ядерной физике - 1

Наши исследования

А. Анализ ошибок при решении графических задач

Анализ решения графических задач показал, что встречаются следующие распостранённые ошибки:

Ошибки в чтении графиков;

Ошибки в действиях с векторными величинами;

Ошибки при анализе графиков изопроцессов;

Ошибки на графическую зависимость электрических величин;

Ошибки при построении с применением законов геометрической оптики;

Ошибки в графических заданиях на квантовые законы и фотоэффект;

Ошибки на применение законов атомной физики.

Б. Социологический опрос

Для того, чтобы выяснить как учащиеся школы осведомлены о графических задачах, мы провели социологический опрос.

Ученикам и учителям нашей школы мы предлагали следующие вопросы анкеты:

  1. 1. Что такое графическая задача?

а) задачи с рисунками;

б) задачи, содержащие схемы, диаграммы;

в) не знаю.

  1. 2. Для чего графические задачи?

б) для развития умения строить графики;

в) не знаю.

3. Можете ли решать графические задачи?

а) да; б) нет; в) не уверен;

4. Хотите ли научиться решать графические задачи?

А) да; б) нет; в) затрудняюсь ответить.

Было опрошено 50 человек. В результате опроса были получены следующие данные:

ВЫВОДЫ:

  1. В результате работы над проектом «Графические задачи» изучили особенности графических задач.
  2. Изучили особенности методики решения графических задач.
  3. Провели анализ характерных ошибок.
  4. Провели социологический опрос.

Рефлексия деятельности:

  1. Нам было интересно работать над проблемой графических задач.
  2. Мы научились проводить исследовательскую деятельность, сопоставлять и сравнивать результаты исследований.
  3. Мы выяснили, что владение методами решения графических задач необходимо для понимания физических явлений.
  4. Мы выяснили, что владение методами решения графических задач необходимо для успешной сдачи ЕГЭ.

Если в задаче линейного программирования имеется только две переменные, то ее можно решить графическим методом.

Рассмотрим задачу линейного программирования с двумя переменными и :
(1.1) ;
(1.2)
Здесь , есть произвольные числа. Задача может быть как на нахождение максимума (max), так и на нахождение минимума (min). В системе ограничений могут присутствовать как знаки , так и знаки .

Построение области допустимых решений

Графический метод решения задачи (1) следующий.
Вначале мы проводим оси координат и и выбираем масштаб. Каждое из неравенств системы ограничений (1.2) определяет полуплоскость, ограниченную соответствующей прямой.

Так, первое неравенство
(1.2.1)
определяет полуплоскость, ограниченную прямой . С одной стороны от этой прямой , а с другой стороны . На самой прямой . Чтобы узнать, с какой стороны выполняется неравенство (1.2.1), мы выбираем произвольную точку, не лежащую на прямой. Далее подставляем координаты этой точки в (1.2.1). Если неравенство выполняется, то полуплоскость содержит выбранную точку. Если неравенство не выполняется, то полуплоскость расположена с другой стороны (не содержит выбранную точку). Заштриховываем полуплоскость, для которой выполняется неравенство (1.2.1).

Тоже самое выполняем для остальных неравенств системы (1.2). Так мы получим заштрихованных полуплоскостей. Точки области допустимых решений удовлетворяют всем неравенствам (1.2). Поэтому, графически, область допустимых решений (ОДР) является пересечением всех построенных полуплоскостей. Заштриховываем ОДР. Она представляет собой выпуклый многоугольник, грани которого принадлежат построенным прямым. Также ОДР может быть неограниченной выпуклой фигурой, отрезком, лучом или прямой.

Может возникнуть и такой случай, что полуплоскости не содержат общих точек. Тогда областью допустимых решений является пустое множество. Такая задача решений не имеет.

Можно упростить метод. Можно не заштриховывать каждую полуплоскость, а вначале построить все прямые
(2)
Далее выбрать произвольную точку, не принадлежащую ни одной из этих прямых. Подставить координаты этой точки в систему неравенств (1.2). Если все неравенства выполняются, то область допустимых решений ограничена построенными прямыми и включает в себя выбранную точку. Заштриховываем область допустимых решений по границам прямых так, чтобы оно включало в себя выбранную точку.

Если хотя бы одно неравенство не выполняется, то выбираем другую точку. И так далее, пока не будет найдены одна точка, координаты которой удовлетворяют системе (1.2).

Нахождение экстремума целевой функции

Итак, мы имеем заштрихованную область допустимых решений (ОДР). Она ограничена ломаной, состоящей из отрезков и лучей, принадлежащих построенным прямым (2). ОДР всегда является выпуклым множеством. Оно может быть как ограниченным множеством, так и не ограниченным вдоль некоторых направлений.

Теперь мы можем искать экстремум целевой функции
(1.1) .

Для этого выбираем любое число и строим прямую
(3) .
Для удобства дальнейшего изложения считаем, что эта прямая проходит через ОДР. На этой прямой целевая функция постоянна и равна . такая прямая называется линией уровня функции . Эта прямая разбивает плоскость на две полуплоскости. На одной полуплоскости
.
На другой полуплоскости
.
То есть с одной стороны от прямой (3) целевая функция возрастает. И чем дальше мы отодвинем точку от прямой (3), тем больше будет значение . С другой стороны от прямой (3) целевая функция убывает. И чем дальше мы отодвинем точку от прямой (3) в другую сторону, тем меньше будет значение . Если мы проведем прямую, параллельную прямой (3), то новая прямая также будет линией уровня целевой функции, но с другим значением .

Таким образом, чтобы найти максимальное значение целевой функции, надо провести прямую, параллельную прямой (3), максимально удаленную от нее в сторону возрастания значений , и проходящую хотя бы через одну точку ОДР. Чтобы найти минимальное значение целевой функции, надо провести прямую, параллельную прямой (3) и максимально удаленную от нее в сторону убывания значений , и проходящую хотя бы через одну точку ОДР.

Если ОДР неограниченна, то может возникнуть случай, когда такую прямую провести нельзя. То есть как бы мы ни удаляли прямую от линии уровня (3) в сторону возрастания (убывания) , то прямая всегда будет проходить через ОДР. В этом случае может быть сколь угодно большим (малым). Поэтому максимального (минимального) значения нет. Задача решений не имеет.

Рассмотрим случай, когда крайняя прямая, параллельная произвольной прямой вида (3), проходит через одну вершину многоугольника ОДР. Из графика определяем координаты этой вершины. Тогда максимальное (минимальное) значение целевой функции определяется по формуле:
.
Решением задачи является
.

Также может встретиться случай, когда прямая параллельна одной из граней ОДР. Тогда прямая проходит через две вершины многоугольника ОДР. Определяем координаты и этих вершин. Для определения максимального (минимального) значения целевой функции, можно использовать координаты любой из этих вершин:
.
Задача имеет бесконечно много решений. Решением является любая точка, расположенная на отрезке между точками и , включая сами точки и .

Пример решения задачи линейного программирования графическим методом

Условие задачи

Фирма выпускает платья двух моделей А и В. При этом используется ткань трех видов. На изготовление одного платья модели А требуется 2 м ткани первого вида, 1 м ткани второго вида, 2 м ткани третьего вида. На изготовление одного платья модели В требуется 3 м ткани первого вида, 1 м ткани второго вида, 2 м ткани третьего вида. Запасы ткани первого вида составляют 21 м, второго вида - 10 м, третьего вида - 16 м. Выпуск одного изделия типа А приносит доход 400 ден. ед., одного изделия типа В - 300 ден. ед.

Составить план производства, обеспечивающий фирме наибольший доход. Задачу решить графическим методом.

Решение

Пусть переменные и означают количество произведенных платьев моделей А и В, соответственно. Тогда количество израсходованной ткани первого вида составит:
(м)
Количество израсходованной ткани второго вида составит:
(м)
Количество израсходованной ткани третьего вида составит:
(м)
Поскольку произведенное количество платьев не может быть отрицательным, то
и .
Доход от произведенных платьев составит:
(ден. ед.)

Тогда экономико-математическая модель задачи имеет вид:


Решаем графическим методом.
Проводим оси координат и .

Строим прямую .
При .
При .
Проводим прямую через точки (0; 7) и (10,5; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (0; 10) и (10; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (0; 8) и (8; 0).



Заштриховываем область, чтобы точка (2; 2) попала в заштрихованную часть. Получаем четырехугольник OABC.


(П1.1) .
При .
При .
Проводим прямую через точки (0; 4) и (3; 0).

Далее замечаем, что поскольку коэффициенты при и целевой функции положительны (400 и 300), то она возрастает при увеличении и . Проводим прямую, параллельную прямой (П1.1), максимально удаленную от нее в сторону возрастания , и проходящую хотя бы через одну точку четырехугольника OABC. Такая прямая проходит через точку C. Из построения определяем ее координаты.
.

Решение задачи: ;

Ответ

.
То есть, для получения наибольшего дохода, необходимо изготовить 8 платьев модели А. Доход при этом составит 3200 ден. ед.

Пример 2

Условие задачи

Решить задачу линейного программирования графическим методом.

Решение

Решаем графическим методом.
Проводим оси координат и .

Строим прямую .
При .
При .
Проводим прямую через точки (0; 6) и (6; 0).

Строим прямую .
Отсюда .
При .
При .
Проводим прямую через точки (3; 0) и (7; 2).

Строим прямую .
Строим прямую (ось абсцисс).

Область допустимых решений (ОДР) ограничена построенными прямыми. Чтобы узнать, с какой стороны, замечаем, что точка принадлежит ОДР, поскольку удовлетворяет системе неравенств:

Заштриховываем область по границам построенных прямых, чтобы точка (4; 1) попала в заштрихованную часть. Получаем треугольник ABC.

Строим произвольную линию уровня целевой функции, например,
.
При .
При .
Проводим прямую линию уровня через точки (0; 6) и (4; 0).
Поскольку целевая функция увеличивается при увеличении и , то проводим прямую, параллельную линии уровня и максимально удаленную от нее в сторону возрастания , и проходящую хотя бы через одну точку треугольника АВC. Такая прямая проходит через точку C. Из построения определяем ее координаты.
.

Решение задачи: ;

Ответ

Пример отсутствия решения

Условие задачи

Решить графически задачу линейного программирования. Найти максимальное и минимальное значение целевой функции.

Решение

Решаем задачу графическим методом.
Проводим оси координат и .

Строим прямую .
При .
При .
Проводим прямую через точки (0; 8) и (2,667; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (0; 3) и (6; 0).

Строим прямую .
При .
При .
Проводим прямую через точки (3; 0) и (6; 3).

Прямые и являются осями координат.

Область допустимых решений (ОДР) ограничена построенными прямыми и осями координат. Чтобы узнать, с какой стороны, замечаем, что точка принадлежит ОДР, поскольку удовлетворяет системе неравенств:

Заштриховываем область, чтобы точка (3; 3) попала в заштрихованную часть. Получаем неограниченную область, ограниченную ломаной ABCDE.

Строим произвольную линию уровня целевой функции, например,
(П3.1) .
При .
При .
Проводим прямую через точки (0; 7) и (7; 0).
Поскольку коэффициенты при и положительны, то возрастает при увеличении и .

Чтобы найти максимум, нужно провести параллельную прямую, максимально удаленную в сторону возрастания , и проходящую хотя бы через одну точку области ABCDE. Однако, поскольку область неограниченна со стороны больших значений и , то такую прямую провести нельзя. Какую бы прямую мы не провели, всегда найдутся точки области, более удаленные в сторону увеличения и . Поэтому максимума не существует. можно сделать сколь угодно большой.

Ищем минимум. Проводим прямую, параллельную прямой (П3.1) и максимально удаленную от нее в сторону убывания , и проходящую хотя бы через одну точку области ABCDE. Такая прямая проходит через точку C. Из построения определяем ее координаты.
.
Минимальное значение целевой функции:

Ответ

Максимального значения не существует.
Минимальное значение
.

Часто графическое представление физического процесса делает его более наглядным и тем самым облегчает понимание рассматриваемого явления. Позволяя порой значительно упростить расчеты, графики широко используются на практике для решения различных задач. Умение строить и читать их сегодня является обязательным для многих специалистов.

К графическим задачам мы относим задачи:

  • на построение, где очень помогают, рисунки, чертежи;
  • схемы, решаемые с помощью векторов, графиков, диаграмм, эпюр и номограмм.

1) Мячик бросают с земли вертикально вверх с начальной скоростью v о. Постройте график зависимости скорости мячика от времени, считая удары о землю абсолютно упругими. Сопротивлением воздуха пренебречь. [решение ]

2) Пассажир, опоздавший к поезду, заметил, что предпоследний вагон прошел мимо него за t 1 = 10 c , а последний — за t 2 = 8 с . Считая движение поезда равноускоренным, определите время опоздания. [решение ]

3) В комнате высотой H к потолку одним концом прикреплена легкая пружина жесткостью k , имеющая в недеформированном состоянии длину l о (l о < H ). На полу под пружиной размещают брусок высотой x с площадью основания S , изготовленный из материала плотностью ρ . Построить график зависимости давления бруска на пол от высоты бруска. [решение ]

4) Букашка ползет вдоль оси Ox . Определите среднюю скорость ее движения на участке между точками с координатами x 1 = 1,0 м и x 2 = 5,0 м , если известно, что произведение скорости букашки на ее координату все время остается постоянной величиной, равной c = 500 см 2 /с . [решение ]

5) К бруску массой 10 кг , находящемуся на горизонтальной поверхности, приложена сила. Учитывая, что коэффициент трения равен 0,7 , определите:

  • cилу трения для случая, если F = 50 Н и направлена горизонтально.
  • cилу трения для случая, если F = 80 Н и направлена горизонтально.
  • построить график зависимости ускорения бруска от горизонтально приложенной силы.
  • с какой минимальной силой нужно тянуть за веревку, чтобы равномерно перемещать брусок? [решение ]

6) Имеются две трубы, подсоединенных к смесителю. На каждой из труб имеется кран, которым можно регулировать поток воды по трубе, изменяя его от нуля до максимального значения J o = 1 л/с . В трубах течет вода с температурами t 1 = 10° C и t 2 = 50° C . Постройте график зависимости максимального потока воды, вытекающей из смесителя, от температуры этой воды. Тепловыми потерями пренебречь. [решение ]

7) Поздним вечером молодой человек ростом h идет по краю горизонтального прямого тротуара с постоянной скоростью v . На расстоянии l от края тротуара стоит фонарный столб. Горящий фонарь закреплен на высоте H от поверхности земли. Постройте график зависимости скорости движения тени головы человека от координаты x . [решение ]