Ванная        02.03.2024   

1 закон менделя определение. Законы грегора менделя. Такое явление называют кодоминированием

I закон Менделя. Закон единообразия гибридов первого поколения

При скрещивании гомозиготных особей, отличающихся по одной паре альтернативных (взаимоисключающих) признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

Скрещивали растения гороха с желтыми (доминантный признак) и зелеными (рецессивный признак) семенами. Образование гамет сопровождается мейозом. Каждое растение образует один сорт гамет. Из каждой гомологичной пары хромосом в гаметы отходят по одной хромосоме с одним из аллельных генов (А или а). После оплодотворения парность гомологичных хромосом восстанавливается, образуются гибриды. Все растения будут иметь семена только желтого цвета (фенотип), гетерозиготны по генотипу Аа. Это происходит при полном доминировании.

Гибрид Аа имеет один ген А от одного родителя, а второй ген - а - от другого родителя (рис. 73).

Гаплоидные гаметы (G), в отличие от диплоидных организмов, обводят кружочком.

В результате скрещивания получаются гибриды первого поколения, обозначаемые F 1 .

Для записи скрещиваний применяют специальную таблицу, предложенную английским генетиком Пеннетом и называемую решеткой Пеннета.

По горизонтали выписывают гаметы отцовской особи, по вертикали - материнской. В местах пересечений записывают геноти-

Рис. 73. Наследование при моногибридном скрещивании.

I - скрещивание двух сортов гороха с желтыми и зелеными семенами (Р); II

Цитологические основы I и II законов Менделя.

F 1 - гетерозиготы (Аа), F 2 - расщепление по генотипу 1 АА: 2 Аа: 1 аа.

пы потомков. В таблице число клеток зависит от числа типов гамет, образуемых скрещиваемыми особями.

II закон Менделя. Закон расщепления гибридов первого поколения

При скрещивании гибридов первого поколения между собой во втором поколении появляются особи как с доминантными, так и с рецессивными признаками и происходит расщепление по фенотипу в соотношении 3:1 (три доминантных фенотипа и один рецессивный) и 1:2:1 по генотипу (см. рис. 73). Такое расщепление возможно при полном доминировании.

Гипотеза «чистоты» гамет

Закон расщепления можно объяснить гипотезой «чистоты» гамет.

Явление несмешивания аллелей альтернативных признаков в гаметах гетерозиготного организма (гибрида) Мендель назвал ги- потезой «чистоты» гамет. За каждый признак отвечают два аллельных гена (Аа). При образовании гибридов аллельные гены не смешиваются, а остаются в неизмененном виде.

Гибриды Аа в результате мейоза образуют два типа гамет. В каждую гамету идет одна из пары гомологичных хромосом с ал- лельным геном А или аллельным геном а. Гаметы чисты от другого аллельного гена. При оплодотворении восстанавливается гомологичность хромосом и аллельность генов, проявляется рецессивный признак (зеленый цвет горошин), ген которого в гибридном организме не проявлял своего действия. Признаки развиваются в результате взаимодействия генов.

Неполное доминирование

При неполном доминировании гетерозиготные особи имеют собственный фенотип, и признак носит промежуточный характер.

При скрещивании растений ночной красавицы с красными и белыми цветками в первом поколении появляются особи с розовой окраской. При скрещивании гибридов первого поколения (розовые цветки) расщепление в потомстве по генотипу и фенотипу совпадает (рис. 74).


Рис. 74. Наследование при неполном доминировании у растения ночной красавицы.

Свойством неполного доминирования обладает ген, вызывающий серповидноклеточную анемию у человека.

Анализирующее скрещивание

Рецессивный признак (зеленый горох) проявляется только в гомозиготном состоянии. Гомозиготные (желтый горох) и гетерозиготные (желтый горох) особи с доминантными признаками по фенотипу не отличаются друг от друга, но имеют разные генотипы. Их генотипы можно установить, скрестив с особями с известным генотипом. Такой особью может быть зеленый горох, имеющий гомозиготный рецессивный признак. Это скрещивание называют анализирующимися. Если в результате скрещивания все потомство будет единообразным, то исследуемая особь гомозиготна.

Если произойдет расщепление, то особь гетерозиготна. Потомство гетерозиготной особи дает расщепление в соотноше- нии 1:1.

III закон Менделя. Закон независимого комбинирования признаков (рис. 75). Организмы отличаются друг от друга по нескольким признакам.

Скрещивание особей, отличающихся по двум признакам, называют дигибридным, а по многим - полигибридным.

При скрещивании гомозиготных особей, отличающихся по двум парам альтернативных признаков, во втором поколении происходит независимое комбинирование признаков.

В результате дигибридного скрещивания все первое поколение единообразно. Во втором поколении происходит расщепление по фенотипу в соотношении 9:3:3:1.

Например, если скрестить горох с желтыми семенами и гладкой поверхностью (доминантный признак) с горохом с зелеными семенами и морщинистой поверхностью (рецессивный признак), то все первое поколение будет единообразным (желтые и гладкие семена).

При скрещивании гибридов между собой во втором поколении появились особи с признаками, которых не было у исходных форм (желтые морщинистые и зеленые гладкие семена). Эти признаки наследуются независимо друг от друга.

Дигетерозиготная особь образовывала 4 типа гамет

Для удобства подсчета особей, получившихся во втором поколении после скрещивания гибридов, пользуются решеткой Пеннета.

Рис. 75. Независимое распределение признаков при дигибридном скрещивании. А, В, а, b - доминантные и рецессивные аллели, контролирующие развитие двух признаков. G - половые клетки родителей; F 1 - гибриды первого поколения; F 2 - гибриды второго поколения.

В результате мейоза в каждую гамету отойдет по одному из аллельных генов из гомологичной пары хромосом.

Образуется 4 типа гамет. Расщепление после скрещивания в соотношении 9:3:3:1 (9 особей с двумя доминантными признаками, 1 особь с двумя рецессивными признаками, 3 особи с одним доминантным, а другим рецессивным признаками, 3 особи с доминантным и рецессивным признаками).

Появление особей с доминантными и рецессивными признаками возможно потому, что гены, отвечающие за цвет и форму горошин, находятся в различных негомологичных хромосомах.

Каждая пара аллельных генов распределяется независимо от другой пары, и поэтому гены могут комбинироваться независимо.

Гетерозиготная особь по «n» парам признаков образует 2 n типов гамет.

Вопросы для самоконтроля

1. Как формулируется I закон Менделя?

2. Горох с какими семенами скрещивал Мендель?

3. Растения с какими семенами получились в результате скрещивания?

4. Как формулируется II закон Менделя?

5. Растения с какими признаками получились в результате скрещивания гибридов первого поколения?

6. В каком числовом соотношении происходит расщепление?

7. Как можно объяснить закон расщепления?

8. Как объяснить гипотезу «чистоты» гамет?

9. Как объяснить неполное доминирование признаков? 10.Какое расщепление по фенотипу и генотипу происходит

после скрещивания гибридов первого поколения?

11.Когда производят анализирующее скрещивание?

12. Как производят анализирующее скрещивание?

13.Какое скрещивание называют дигибридным?

14. В каких хромосомах находятся гены, отвечающие за цвет и форму горошин?

15. Как формулируется III закон Менделя?

16. Какое расщепление по фенотипу происходит в первом поколении?

17. Какое расщепление происходит по фенотипу во втором поколении?

18.Что используют для удобства подсчета особей, получившихся после скрещивания гибридов?

19.Как можно объяснить появление особей с признаками, которых не было раньше?

Ключевые слова темы «Законы Менделя»

аллельность анемия

взаимодействие

гаметы

ген

генотип

гетерозигота

гибрид

гипотеза «чистоты» гамет

гомозигота

гомологичность

горох

горошина

действие

дигибрид

доминирование

единообразие

закон

мейоз

образование окраска

оплодотворение

особь

парность

поверхность

подсчет

поколение

полигибрид

потомство

появление

признак

растение

расщепление

решетка Пеннета

родители

свойство

семена

скрещивание

слияние

соотношение

сорт

удобство

фенотип

форма

характер

цвет

цветы

Множественный аллелизм

К числу аллельных генов могут относиться не два, а большее число генов. Это множественные аллели. Они возникают вслед- ствие мутации (замены или утраты нуклеотида в молекуле ДНК). Примером множественных аллелей могут быть гены, отвечающие за группы крови у человека: I A , I B , I 0 . Гены I A и I B доминантны по отношению к гену I 0 . В генотипе всегда присутствуют только два гена из серии аллелей. Гены I 0 I 0 определяют I группу крови, гены I A I A , I A I O - II группу, I B I B , I B I 0 - III группу, I A I B - IV группу.

Взаимодействие генов

Между геном и признаком существует сложная связь. Один ген может отвечать за развитие одного признака.

Гены отвечают за синтез белков, которые катализируют определенные биохимические реакции, в результате чего проявляются определенные признаки.

Один ген может отвечать за развитие нескольких признаков, проявляя плейотропное действие. Выраженность плейотропного действия гена зависит от биохимической реакции, которую ката- лизирует фермент, синтезируемый под контролем данного гена.

За развитие одного признака могут отвечать несколько генов - это полимерное действие гена.

Проявление признаков - результат взаимодействия различных биохимических реакций. Эти взаимодействия могут быть связаны с аллельными и неаллельными генами.

Взаимодействие аллельных генов.

Взаимодействие генов, находящихся в одной аллельной паре, происходит по типу:

. полного доминирования;

. неполного доминирования;

. кодоминирования;

. сверхдоминирования.

При полном доминировании действие одного (доминантного) гена полностью подавляет действие другого (рецессивного). При скрещивании в первом поколении проявляется доминантный признак (например желтый цвет горошин).

При неполном доминировании происходит ослабление действия доминантного аллеля в присутствии рецессивного. Гете- розиготные особи, полученные в результате скрещивания, имеют собственный генотип. Например, при скрещивании растений ночной красавицы с красными и белыми цветками появляются розовые.

При кодоминировании проявляется действие обоих генов при одновременном их присутствии. В результате проявляется новый признак.

Например, IV группа крови (I A I B) у человека формируется при взаимодействии генов I A и I B . По отдельности ген I A определяет II группу крови, а I B - III группу крови.

При сверхдоминировании у доминантного аллеля в гетерозиготном состоянии отмечается более сильное проявление признака, чем в гомозиготном.

Взаимодействие неаллельных генов

На один признак организма очень часто могут влиять несколько пар неаллельных генов.

Взаимодействие неаллельных генов происходит по типу:

. комплементарности;

. эпистаза;

. полимерии.

Комплементарное действие проявляется при одновременном присутствии в генотипе организмов двух доминантных неаллельных генов. Каждый из доминантных генов может проявляться самостоятельно, если другой находится в рецессивном состоянии, но их совместное присутствие в доминантном состоянии в зиготе обусловливает новое состояние признака.

Пример. Скрещивали два сорта душистого горошка с белыми цветками. Все гибриды первого поколения имели красные цветки. Окрас- ка цветков зависит от двух взаимодействующих генов А и В.

Белки (ферменты), синтезированные на основе генов А и В, катализируют биохимические реакции, которые приводят к прояв- лению признака (красная окраска цветков).

Эпистаз - взаимодействие, при котором один из доминантных или рецессивных неаллельных генов подавляет действие другого неаллельного гена. Ген, подавляющий действие другого, называют эпистатическим геном, или супрессором. Подавляемый ген называют гипостатическим. Эпистаз бывает доминантным и рецессивным.

Доминантный эпистаз. Примером доминантного эпистаза может быть наследование окраски оперения у кур. Доминантный ген С отвечает за окраску оперения. Доминантный неаллельный ген I подавляет развитие окраски оперения. В результате этого куры, имеющие ген С в генотипе, в присутствии гена I имеют белое оперение: IICC; IiCC; IiCc; Iicc. Куры с генотипом iicc также будут белыми, потому что эти гены находятся в рецессивном состоянии. Оперение кур с генотипом iiCC, iiCc будет окрашено. Белая окраска оперения обусловлена присутствием рецессивного аллеля гена i или наличием гена подавителя окраски I. В основе взаимодействия генов лежат биохимические связи между белками-ферментами, которые кодируются эпистатическими генами.

Рецессивный эпистаз. Рецессивным эпистазом объясняется бомбейский феномен - необычное наследование антигенов системы групп крови АВ0. Известны 4 группы крови.

В семье женщины с I группой крови (I 0 I 0) от мужчины со II группой крови (I A I A) родился ребенок с IV группой крови (I A I B), что невозможно. Оказалось, что женщина унаследовала от матери ген I B , от отца ген I 0 . Проявил действие только ген I 0 , поэтому

считалось, что женщина имеет I группу крови. Ген I B был подавлен рецессивным геном х, который находился в гомозиготном состоянии - хх.

У ребенка этой женщины подавленный ген I B проявил свое действие. Ребенок имел IV группу крови I A I B .

Полимерное действие генов связано с тем, что несколько неал- лельных генов могут отвечать за один и тот же признак, усиливая его проявление. Признаки, зависящие от полимерных генов, относят к количественным. Гены, отвечающие за развитие количественных признаков, дают суммарный эффект. Например, за пигментацию кожи у человека отвечают полимерные неаллельные гены S 1 и S 2 . В присутствии доминантных аллелей этих генов синтезируется много пигмента, в присутствии рецессивных - мало. Интенсивность окраски кожи зависит от количества пигмента, что определяется количеством доминантных генов.

От брака между мулатами S 1 s 1 S 2 s 2 рождаются дети с пигментацией кожи от светлой до темной, но вероятность рождения ребенка с белым и черным цветом кожи равна 1/16.

Многие признаки наследуются по принципу полимерии.

Вопросы для самоконтроля

1. Что такое множественные аллели?

2. Какие гены отвечают за группы крови у человека?

3. Какие группы крови есть у человека?

4. Какие связи существуют между геном и признаком?

5. Как взаимодействуют аллельные гены?

6. Как взаимодействуют неаллельные гены?

7. Как можно объяснить комплементарное действие гена?

8. Как можно объяснить эпистаз?

9. Как можно объяснить полимерное действие гена?

Ключевые слова темы «Множественные аллели и взаимодействие генов»

аллелизм аллель антигены брак

взаимодействие

генотип

гибрид

горох

горошек

группа крови

действие

дети

доминирование

женщина

замена

кодоминантность

кодоминирование

кожа

куры

мать

молекула

мулат

мутация

наличие

наследование

нуклеотиды

окраска

оперение

основа

отношение

пигмент

пигментация

плейотропия

подавитель

поколение

полимерия

признак

пример

присутствие

проявление

развитие

реакции

ребенок

результат

сверхдоминирование связь

синтез белка система

скрещивание

состояние

степень

утрата

феномен

ферменты

цвет

цветы

человек

Моногибридное скрещивание. Первый закон Менделя.

В опытах Менделя при скрещивании сортов гороха, которые имели желтые и зеленые семена, все потомство (т.е. гибриды первого поколения) оказалось с желтым семенами. При этом не имело значения, из какого именно семена (желтого или зеленого) выросли материнские (отцовские) растения. Итак, оба родителя в равной степени способны передавать свои признаки потомству.
Аналогичные результаты были обнаружены и в опытах, в которых во внимание брались другие признаки. Так, при скрещивании растений с гладкими и морщинистым семенами все потомство имело гладкие семена. При скрещивании растений с пурпурными и белыми цветками у всех гибридов оказались лишь пурпурные лепестки цветков и т. д.
Обнаруженная закономерность получила название первый закон Менделя, или закон единообразия гибридов первого поколения. Состояние (аллель) признака, проявляющегося в первом поколении, получило название доминантного, а состояние (аллель), которое в первом поколении гибридов не проявляется, называется рецессивным. «Задатки» признаков (по современной терминологии - гены) Г. Мендель предложил обозначать буквами латинского алфавита. Состояния, принадлежащие к одной паре признаков, обозначают одной и той же буквой, но доминантный аллель - большой, а рецессивный - маленькой.

Второй закон Менделя.

При скрещивании гетерозиготных гибридов первого поколения между собой (самоопыления или родственное скрещивание) во втором поколении появляются особи как с доминантными, так и с рецессивными состояниями признаков, т.е. возникает расщепление, которое происходит в определенных отношениях. Так, в опытах Менделя на 929 растений второго поколения оказалось 705 с пурпурными цветками и 224 с белыми. В опыте, в котором учитывался цвет семян, с 8023 семян гороха, полученных во втором поколении, было 6022 желтых и 2001 зеленых, а с 7324 семян, в отношении которых учитывалась форма семени, было получено 5474 гладких и 1850 морщинистых. Исходя из полученных результатов , Мендель пришел к выводу, что во втором поколении 75% особей имеют доминантное состояние признака, а 25% - рецессивное (расщепление 3:1). Эта закономерность получила название второго закона Менделя , или закона расщепления.
Согласно этому закону и используя современную терминологию, можно сделать следующие выводы:

а) аллели гена, находясь в гетерозиготном состоянии, не изменяют структуру друг друга;
б) при созревании гамет у гибридов образуется примерно одинаковое число гамет с доминантными и рецессивными аллелями;

в) при оплодотворении мужские и женские гаметы, несущие доминантные и рецессивные аллели, свободно комбинируются.
При скрещивании двух гетерозигот (Аа), в каждой из которых образуется два типа гамет (половина с доминантными аллелями - А, половина - с рецессивными - а), необходимо ожидать четыре возможных сочетания. Яйцеклетка с аллелью А может быть оплодотворена с одинаковой долей вероятности как сперматозоидом с аллелью А, так и сперматозоидом с аллелью а; и яйцеклетка с аллелью а - сперматозоидом или с аллелью А, или аллелью а. В резульатате получаются зиготы АА, Аа, Аа, аа или АА, 2Аа, аа.
По внешнему виду (фенотипу) особи АА и Аа не отличаются, поэтому расщепление выходит в соотношении 3:1. По генотипу особи распределяются в соотношении 1АА:2Аа:аа. Понятно, что если от каждой группы особей второго поколения получать потомство только самоопылением, то первая (АА) и последняя (аа) группы (они гомозиготные) будут давать только однообразное потомство (без расщепления), а гетерозиготные (Аа) формы будут давать расщепление в соотношении 3:1.
Таким образом, второй закон Менделя, или закон расщепления, формулируется так: при скрещивании двух гибридов первого поколения, которые анализируются по одной альтернативной паре состояний признака, в потомстве наблюдается расщепление по фенотипу в соотношении 3:1 и по генотипу в соотношении 1:2:1.

Третий закон Менделя, или закон независимого наследования признаков.

Изучая расщепления при дигибридном скрещивании, Мендель обратил внимание на следующее обстоятельство. При скрещивании растений с желтыми гладкими (ААВВ) и зелеными морщинистыми (аа bb ) семенами во втором поколении появлялись новые комбинации признаков: желтые морщинистое (Аа bb ) и зеленые гладкие (ааВ b ), которые не встречались в исходных формах . Из этого наблюдения Мендель сделал вывод, что расщепление по каждой признаку происходит независимо от второго признака. В этом примере форма семян наследовалась независимо от их окраски. Эта закономерность получила название третьего закона Менделя, или закона независимого распределения генов.
Третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся по двум (или более) признаках, во втором поколении наблюдаются независимое наследование и комбинирование состояний признаков, если гены, которые их определяют, расположенные в разных парах хромосом. Это возможно потому, что во время мейоза распределение (комбинирования) хромосом в половых клетках при их созревании идет независимо и может привести к появлению потомства с комбинацией признаков, отличных от родительских и прародительский особей.
Для записи скрещиваний нередко используют специальные решетки, которые предложил английский генетик Пеннет (решетка Пеннета). Ими удобно пользоваться при анализе полигибридних скрещиваний. Принцип построения решетки состоит в том, что сверху по горизонтали записывают гаметы отцовской особи, слева по вертикали - гаметы материнской особи, в местах пересечения - вероятные генотипы потомства.

В этой статье кратко и понятно описываются три закона Менделя. Эти законы - основа всей генетики, создав их, Мендель фактически создал эту науку.

Здесь Вы найдёте определение каждого закона и узнаете немного нового о генетике и биологии в целом.

Перед началом чтения статьи стоит понимать, что генотип - это совокупность генов организма, а фенотип - его внешних признаков.

Кто такой Мендель и чем он занимался

Грегор Иоганн Мендель - известный австрийский биолог, родившийся в 1822 году в деревне Гинчице. Хорошо учился, но у семьи его были материальные трудности. Чтобы разобраться с ними, Иоганн Мендель в 1943 году решил стать монахом чешского монастыря в городе Брно и получил там имя Грегор.

Грегор Иоганн Мендель (1822 — 1884)

Позже изучал биологию в Венском университете, а затем решил преподавать физику и природоведение в Брно. Тогда же учёный заинтересовался ботаникой. Он проводил опыты по скрещиванию гороха. На основе результатов этих опытов учёный вывел три закона наследственности, которым и посвящена эта статья.

Опубликованные в работе «Опыты с гибридами растений» в 1866 году, эти законы не получили широкой огласки, и вскоре работа была забыта. О ней вспомнили лишь после смерти Менделя в 1884 году. Вам уже известно, сколько законов он вывел. Теперь пора перейти к рассмотрению каждого.

Первый закон Менделя - закон единообразия гибридов первого поколения

Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого - белые.

Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.

На основе этих опытов учёный вывел свой первый закон, вот его формулировка: все гибриды в первом поколении всегда наследуют лишь один признак от родителей.

Обозначим ген, отвечающий за пурпурные цветки, как A, а за белые- a. Генотип одного родителя - AA (пурпурные), а второго - aa (белые). От первого родителя будет унаследован ген A, а от второго - a. Значит, генотип потомства всегда будет Aa. Ген, обозначенный заглавной буквой, называется доминантным, а строчной - рецессивным.

Если в генотипе организма содержатся два доминантных или два рецессивных гена, то его называют гомозиготным, а организм, содержащий разные гены - гетерозиготным. Если организм гетерозиготен, то рецессивный ген, обозначаемый прописной буквой, подавляется более сильным доминантным, в результате проявляется признак, за который отвечает доминантный. Значит, горох с генотипом Aa будет обладать пурпурными цветками.

Скрещивание двух гетерозиготных организмов с разными признаками - это моногибридное скрещивание.

Кодоминирование и неполное доминирование

Бывает такое, что доминантный ген не может подавить рецессивный. И тогда в организме проявляются оба родительских признака.

Такое явление можно наблюдать на примере камелии. Если в генотипе этого растения один ген отвечает за красные лепестки, а другой - за белые, то половина лепестков камелии станут красными, а остальные - белыми.

Такое явление называют кодоминированием.

Неполное доминирование - похожее явление, при котором появляется третий признак, нечто среднее между тем, что было у родителей. Например, цветок ночная красавица с генотипом, содержащим и белые, и красные лепестки, окрашивается в розовый.

Второй закон Менделя - закон расщепления

Итак, мы помним, что при скрещивании двух гомозиготных организмов всё потомство примет лишь один признак. Но что, если взять из этого потомства два гетерозиготных организма и скрестить их? Будет ли потомство единообразным?

Вернёмся к гороху. Каждый родитель с равной вероятностью передаст либо ген A, либо ген a. Тогда потомство разделится следующим образом:

  • AA - пурпурные цветки (25%);
  • aa - белые цветки (25%);
  • Aa - пурпурные цветки (50%).

Видно, что организмов с пурпурными цветками в три раза больше. Это явление расщепления. В этом и заключается второй закон Грегора Менделя: при скрещивании гетерозиготных организмов потомство расщепляется в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Впрочем, существуют так называемые летальные гены. При их наличии происходит отклонение от второго закона. Например, потомство жёлтых мышей расщепляется в соотношении 2:1.

То же происходит и с лисицами платинового цвета. Дело в том, что если в генотипе этих (и некоторых других) организмов оба гена доминантные, то они просто погибают. В результате доминантный ген может проявляться только если организм гетерозиотен.

Закон чистоты гамет и его цитологическое обоснование

Возьмём жёлтый горох и зелёный горох, ген жёлтого цвета - доминантный, а зелёного - рецессивный. В гибриде будут содержаться оба этих гена (хотя мы увидим лишь проявление доминантного).

Известно, что от родителя к потомству гены переносятся с помощью гамет. Гамета - это половая клетка. В генотипе гибрида имеется два гена, выходит, в каждой гамете - а их две - находилось по одному гену. Слившись, они образовали генотип гибрида.

Если во втором поколении проявился рецессивный признак, характерный одному из родительских организмов, значит, выполнялись следующие условия:

  • наследственные факторы гибридов не изменялись;
  • каждая гамета содержала в себе один ген.

Второй пункт - закон чистоты гамет. Конечно, гена не два, их больше. Существует понятие аллельных генов. Они отвечают за один и тот же признак. Зная это понятие, можно сформулировать закон так: в гамету проникает по одному, случайно выбранному, гену из аллели.

Цитологическая основа данного правила: клетки, в которых находятся содержащие пары аллелей хромосомы со всей генетической информацией, делятся и образуют клетки, в которых есть лишь по одной аллели - гаплоидные клетки. В данном случае это гаметы.

Третий закон Менделя - закон независимого наследования

Выполнение третьего закона возможно при дигибридном скрещивании, когда исследуется не один признак, а несколько. В случае с горохом это, например, цвет и гладкость семян.

Гены, отвечающие за цвет семян, обозначим как A (жёлтый) и a (зелёный); за гладкость - B (гладкие) и b (морщинистые). Попробуем провести дигибридное скрещивание организмов с разными признаками.

Первый закон не нарушается при таком скрещивании, то есть гибриды будут одинаковы и по генотипу (AaBb), и по фенотипу (с жёлтыми гладкими семенами).

Каким же будет расщепление во втором поколении? Чтобы это узнать, необходимо выяснить, какие гаметы могут выделить родительские организмы. Очевидно, это AB, Ab, aB и ab. После этого строится схема, называемая решёткой Пиннета.

По горизонтали перечисляются все гаметы, которые может выделить один организм, а по вертикали - другой. Внутри решётки записывается генотип организма, который появился бы при данных гаметах.

AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb

Если изучить таблицу, можно прийти к выводу, что расщепление гибридов второго поколения по фенотипу происходит в соотношении 9:3:3:1. Это понял и Мендель, проведя несколько экспериментов.

Помимо этого он также пришёл к выводу, что то, какой из генов одной аллели (Aa) попадёт в гамету, не зависит от другой аллели (Bb), то есть существует только независимое наследование признаков. Это и есть его третий закон, называемый законом независимого наследования.

Заключение

Три закона Менделя - основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел - генетику.

С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика - это один из самых интересных и перспективных разделов биологии.

Закон расщепления Мендель посадил гибриды первого поколения гороха (которые все были желтыми) и позволил им самоопыляться. В итоге были получены семена, представляющие собой гибриды второго поколения (F2). Среди них уже встречались не только желтые, но и зеленые семена, т. е. произошло расщепление. При этом отношение желтых к зеленым семенам было 3: 1. Появление зеленых семян во втором поколении доказывало то, что этот признак не исчезал или растворялся у гибридов первого поколения, а существовал в дискретном состоянии, но просто был подавлен. В науку были введены понятия о доминантном и рецессивном аллеле гена (Мендель называл их по-другому). Доминантный аллель подавляет рецессивный. У чистой линии желтого гороха два доминантных аллеля - AA. У чистой линии зеленого гороха два рецессивных аллеля - aa. При мейозе в каждую гамету попадает только один аллель.

Законы менделя. основы генетики

Грегор Мендель в XIX веке, проводя исследования на горохе посевном, выявил три основные закономерности наследования признаков, которые носят название трех законов Менделя.
Первые два закона касаются моногибридного скрещивания (когда берут родительские формы, отличающиеся только по одному признаку), третий закон был выявлен при дигибридном скрещивании (родительские формы исследуются по двум разным признакам).

Внимание

Первый закон Менделя. Закон единообразия гибридов первого поколения Мендель взял для скрещивания растения гороха, отличающиеся по одному признаку (например, по окраске семян).

Одни имели желтые семена, другие — зеленые. После перекрестного опыления получаются гибриды первого поколения (F1).


Все они имели желтый цвет семян, т. е. были единообразны.

Фенотипический признак, определяющий зеленый цвет семян, исчез.

Второй закон Менделя.

Добро пожаловать

Инфо

Грегор Мендель — австрийский ботаник, изучивший и описавший закономерность наследования признаков.

Законы Менделя — это основа генетики, по сей день играющие важную роль в изучении влияния наследственности и передачи наследственных признаков.
В своих экспериментах ученый скрещивал различные виды гороха, отличающиеся по одному альтернативному признаку: оттенок цветов, гладкие-морщинистые горошины, высота стебля.
Кроме того, отличительной особенностью опытов Менделя стало использование так называемых «чистых линий», т.е.
потомства, получившегося от самоопыления родительского растения. Законы Менделя, формулировка и краткое описание будут рассмотрены ниже.
Многие годы изучая и скрупулезно подготавливая эксперимент с горохом: специальными мешочками ограждая цветки от внешнего опыления, австрийский ученый достиг невероятных на тот момент результатов.

Лекция № 17. основные понятия генетики. законы менделя

Проявление некоторых генов может сильно зависеть от условий среды. Например, некоторые аллели проявляются фенотипически только при определенной температуре на определенной фазе развития организма. Это тоже может приводить к нарушениям менделевского расщепления.

Гены-модификаторы и полигены. Кроме основного гена, контролирующего данный признак, в генотипе может быть еще несколько генов-модификаторов, модифицирующих проявление основного гена.

Важно

Некоторые признаки могут определяться не одним геном, а целым комплексом генов, каждый из которых вносит свой вклад в проявление признака.

Такой признак принято называть полигенным. Все это тоже вносит нарушения в расщепление 3:1.

Законы менделя

Состояние (аллель) признака, проявляющегося в первом поколении, получило название доминантного, а состояние (аллель), которое в первом поколении гибридов не проявляется, называется рецессивным. «Задатки» признаков (по современной терминологии — гены) Г.

Мендель предложил обозначать буквами латинского алфавита.

Состояния, принадлежащие к одной паре признаков, обозначают одной и той же буквой, но доминантный аллель — большой, а рецессивный — маленькой.

Второй закон Менделя. При скрещивании гетерозиготных гибридов первого поколения между собой (самоопыления или родственное скрещивание) во втором поколении появляются особи как с доминантными, так и с рецессивными состояниями признаков, т.е. возникает расщепление, которое происходит в определенных отношениях. Так, в опытах Менделя на 929 растений второго поколения оказалось 705 с пурпурными цветками и 224 с белыми.

One more step

Таким образом, горох с желтыми семенами образует только гаметы, содержащие аллель A.

Горох с зелеными семенами образует гаметы, содержащие аллель a.

При скрещивании они дают гибриды Aa (первое поколение).

Поскольку доминантный аллель в данном случае полностью подавляет рецессивный, то и наблюдался желтый цвет семян у всех гибридов первого поколения.

Гибриды первого поколения уже дают гаметы A и a. При самоопылении, случайно комбинируясь между собой, они образуют генотипы AA, Aa, aa.

Причем гетерозиготный генотип Aa будет встречаться в два раза чаще (так как Aa и aA), чем каждый гомозиготный (AA и aa).

Таким образом получаем 1AA: 2Aa: 1aa. Поскольку Aa дает желтый цвет семян как и AA, то выходит, что на 3 желтых приходится 1 зеленый.

Третий закон Менделя. Закон независимого наследования разных признаков Мендель провел дигибридное скрещивание, т.

Науколандия

Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин… Сексуальность Если у вас есть один из этих 11 признаков, тогда вы один из самых редких людей на Земле Каких людей можно отнести к категории редких? Это личности, которые не размениваются по мелочам.

Их взгляд на мир отличается широтой…. Новый век Зачем нужен крошечный карман на джинсах? Все знают, что есть крошечный карман на джинсах, но мало кто задумывался, зачем он может быть нужен.

Интересно, что первоначально он был местом для хр… Одежда Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально…
Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета, в которой по горизонтали выписываются гаметы одного родителя, по вертикали гаметы другого родителя. В квадратики вносятся генотипы зигот, образующиеся при слиянии гамет.

Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1.

Таким образом, при дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещивании, т.

е. независимо от другой пары признаков.

Одна чистая линия гороха имела желтые и гладкие семена, а вторая - зеленые и морщинистые.

Все их гибриды первого поколения имели желтые и гладкие семена. Во втором поколении ожидаемо произошло расщепление (у части семян проявился зеленый цвет и морщинистость). Однако при этом наблюдались растения не только с желтыми гладкими и зелеными морщинистыми семенами, но и с желтыми морщинистыми, а также зелеными гладкими.

Другими словами, произошла перекомбинация признаков, говорящая о том, что наследование цвета и формы семян происходит независимо друг от друга.

Действительно, если гены цвета семян находится в одной паре гомологичных хромосом, а гены, определяющие форму, - в другой, то при мейозе они могут независимо друг от друга комбинироваться.

Законы менделя кратко и понятно

Переоткрытие законов Менделя Гуго де Фризом в Голландии, Карлом Корренсом в Германии и Эрихом Чермаком в Австрии произошло лишь в 1900 году. В это же время были подняты архивы и найдены старые работы Менделя.

В это время научный мир уже был готов к тому, чтобы воспринять генетику.

Началось ее триумфальное шествие. Проверяли справедливость законов о наследовании по Менделю (менделировании) на все новых и новых растениях и животных и получали неизменные подтверждения. Все исключения из правил быстро развивались в новые явления общей теории наследственности. В настоящее время три основополагающих закона генетики, три закона Менделя, формулируются следующим образом. Первый закон Менделя. Единообразие гибридов первого поколения.

Все признаки организма могут быть в своем доминантном или рецессивном проявлении, которое зависит от присутствующих аллелей данного гена.

Тщательный и длительный анализ полученных данных позволил вывести исследователю законы наследственности, которые позже получили название «Законы Менделя».

Прежде чем приступить к описанию законов, следует ввести несколько понятий, необходимых для понимания данного текста: Доминантный ген — ген, признак которого проявлен в организме.

Обозначается заглавной буквой: A, B. При скрещивании такой признак считается условно более сильным, т.е.

он всегда проявится в случае, если второе родительское растение будет иметь условно менее слабые признаки. Что и доказывают законы Менделя. Рецессивный ген — ген в фенотипе не проявлен, хотя присутствует в генотипе. Обозначается прописной буквой a,b. Гетерозиготный — гибрид, в чьем генотипе (наборе генов) есть и доминантный, и рецессивный ген некоторого признака.
При оплодотворении гаметы соединяются по правилам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают различные комбинации генов. Независимое распределение генов в потомстве и возникновение различных комбинаций этих генов при дигибридном скрещивании возможно лишь в том случае, если пары аллельных генов расположены в разных парах гомологичных хромосом. Таким образом, третий закон Менделя формулируется так: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга. Рецессивные летали. У Менделя получились одинаковые численные соотношения при расщеплении аллелей многих пар признаков. Это в частности подразумевало одинаковую выживаемость индивидов всех генотипов, но это может быть и не так.

Грегор Мендель - австрийский ботаник, изучивший и описавший Законы Менделя - это по сей день играющие важную роль в изучении влияния наследственности и передачи наследственных признаков.

В своих экспериментах ученый скрещивал различные виды гороха, отличающиеся по одному альтернативному признаку: оттенок цветов, гладкие-морщинистые горошины, высота стебля. Кроме того, отличительной особенностью опытов Менделя стало использование так называемых "чистых линий", т.е. потомства, получившегося от самоопыления родительского растения. Законы Менделя, формулировка и краткое описание будут рассмотрены ниже.

Многие годы изучая и скрупулезно подготавливая эксперимент с горохом: специальными мешочками ограждая цветки от внешнего опыления, австрийский ученый достиг невероятных на тот момент результатов. Тщательный и длительный анализ полученных данных позволил вывести исследователю законы наследственности, которые позже получили название "Законы Менделя".

Прежде чем приступить к описанию законов, следует ввести несколько понятий, необходимых для понимания данного текста:

Доминантный ген - ген, признак которого проявлен в организме. Обозначается A, B. При скрещивании такой признак считается условно более сильным, т.е. он всегда проявится в случае, если второе родительское растение будет иметь условно менее слабые признаки. Что и доказывают законы Менделя.

Рецессивный ген - ген в фенотипе не проявлен, хотя присутствует в генотипе. Обозначается прописной буквой a,b.

Гетерозиготный - гибрид, в чьем генотипе (наборе генов) есть и доминантный, и некоторого признака. (Aa или Bb)

Гомозиготный - гибрид, обладающий исключительно доминантными или только рецессивными генами, отвечающими за некий признак. (AA или bb)

Ниже будут рассмотрены Законы Менделя, кратко сформулированные.

Первый закон Менделя , также известный, как закон единообразия гибридов, можно сформулировать следующим образом: первое поколение гибридов, получившихся от скрещивания чистых линий отцовских и материнских растений, не имеет фенотипических (т.е. внешних) различий по изучаемому признаку. Иными словами, все дочерние растения имеют одинаковый оттенок цветков, высоту стебля, гладкость или шероховатость горошин. Более того, проявленный признак фенотипически в точности соответствует исходному признаку одного из родителей.

Второй закон Менделя или закон расщепления гласит: потомство от гетерозиготных гибридов первого поколения при самоопылении или родственном скрещивании имеет как рецессивные, так и доминантные признаки. Причем расщепление происходит по следующему принципу: 75% - растения с доминантным признаком, остальные 25% - с рецессивным. Проще говоря, если родительские растения имели красные цветки (доминантный признак) и желтые цветки (рецессивный признак), то дочерние растения на 3/4 будут иметь красные цветки, а остальные - желтые.

Третий и последний закон Менделя , который еще называют в общих чертах означает следующее: при скрещивании гомозиготных растений, обладающих 2 и более разными признаками (то есть, например, высокое растение с красными цветками(AABB) и низкое растение с желтыми цветками(aabb), изучаемые признаки (высота стебля и оттенок цветков) наследуются независимо. Иными словами, результатом скрещивания могут стать высокие растения с желтыми цветками (Aabb) или низкие с красными(aaBb).

Законы Менделя, открытые еще в середине 19 века, много позже получили признание. На их основе была построена вся современная генетика, а вслед за ней - селекция. Кроме того, законы Менделя являются подтверждением великого разнообразия существующих ныне видов.